IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 10, 0CTOBER 1989
|

1523

Lumped Capacitance and Open End Effects
of Striplike Structures in Multilayered
and Anisotropic Substrates

RAFAEL R. BOIX AND MANUEL HORNO, MEMBER, IEEE

Abstract —Variational techniques in the spectral domain are used to
calculate the lumped capacitance of a rectangular patch embedded in an
arbitrary multilayered anisotropic substrite in a very accurate way. The
results obtained are applied to the determination of the quasi-static edge
capacitance of semi-infinite striplines and microstrip lines.

I. INTRODUCTION

LANAR MICROSTRIP structures-consisting of trans-

mission lines, discontinuities, and lumped elements are
nowadays widely used in MIC’s and MMIC’s. In the case
of finite-sized elements, rectangular and circular patches
are used as capacitors. Another subject of interest is that
of discontinuities, which invariably appear in any mi-
crostrip circuit. When discontinuity dimensions are much
smaller than the wavelength, they may be approximated by
lumped-element equivalent circuits. For instance, an RLC
termination can be used as a model for an abruptly ended
microstrip. In fact, in this case it is only necessary to take
into account the capacitive effect because it turns out to be
dominant when frequencies are kept below the quasi-static
limit [1],]2].

In this paper, we focus our attention on the calculation
of the lumped capacitance of a rectangular patch and the
edge capacitance of an open-circuit striplike line, both
embedded on a stratified substrate consisting of anisotropic
lossless dielectric layers. Multilayered structures are in-
cluded because they are used in MMIC applications when
several metal layers are involved. The effect of anisotropy
is also studied because significant errors may be incurred
when it is neglected in analyzing uniaxial and biaxial
substrates [3],[4]. In fact, extensive work on the characteri-
zation of infinite planar transmission lines on anisotropic
substrates can be found in the existing literature [3], but
the influence of anisotropy on the design of lumped ele-
ments and discontinuities has hardly been studied [5]. In
the analysis, variational techniques in the spectral domain
are used [6],[7] since they present inherent advantages over
other reported methods in the spatial domain [8],[9]. De-
sign graphs which enhance and generalize previously re-
ported results are given.
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II. OUTLINE OF THE THEORETICAL PROCEDURES

In Fig. 1(a) is shown the cross section of a stratified
medium composed of N layers of lossless, anisotropic,
dielectric materials. Either one rectangular conductor plate
(Fig. 1(b)) or one semi-infinite conductor strip (Fig. 1(c)) is
placed at the Mth interface of the multilayered structure,
both referred to the coordinate axes as it is shown in Fig.
1(a)—(c). The conductors are assumed to be lossless and
infinitely thin. The interfaces i = 0 and i = N, which limit
the multilayered structure, are allowed to be any of three
possibilities: electric walls, magnetic walls, or open bound-
aries. In the analysis of the rectangular plate shown in Fig.
1(b), each dielectric is defined by a general symmetric
permittivity tensor, given by the following expression:

&K & *
€11,, €2, €13,
- L * * .
§,=¢| €12, €2, €n3, (i=1,---,N). (1)
X . €X . ek,
13,¢ 23, 33,i

The elements of tensor €, can be expressed as a function
of its eigenvalues €, €, and ¢, and of the Euler angles
¢,, 8, and ¢, which describe the position of its principal
axes referred to the coordinate axes chosen in Fig. 1(a).
When we study the open-circuit, striplike line (Fig. 1(c)),
we restrict ourselves to dielectric' substrates with uniaxial
anisotropy and tilted optical axis in the X-Y plane of Fig.
1(a). Therefore, in that case, the tensor €, in (1) is such that
€5,=¢€3,=03G=1,---,N).

It is possible to find a variational expression in the
spectral domain for the capacitance of the rectangular
plate of Fig. 1(b) embedded in the multilayered structure
of Fig. 1(a). This expression can be written as [7]

1/C= (1/4W2Q2)f_+:f_+:6(a»B)Ip(a,B)IzdadB-
(2)

Here, p(a, B) is the two-dimensional Fourier transform of
the charge density on the plate in the X—Z plane and
G(a, B) may be interpreted as the Fourier transform of the
Green’s function worked out at the interface on which
conductors lie [6]. Following Thomson’s theorem, (2) pro-
vides a lower bound of the capacitance.
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Since the previous expression is stationary, a good ap-
proximation of the charge density on the conductor plate
may yield a very accurate value of the capacitance. To
optimize the results, trial function expansions are used to
represent the charge density. The Rayleigh—Ritz method is
applied to determine the unknown weighting coefficients.
Trial functions should be chosen in such a way that they
fulfill the physical constraints of the problem, such as the
discontinuity that the charge density has at the edges of
the conductor plate. In this sense, we enhance previous
charge density approximations [6],[7] and we propose the
following expression:

p(x,2)=f(x)g(z) 3)

where
f(x) = {(2/wW)[1/(1~(2x/W)2)]”2
+(2/7W) :V__: a,T,,2x/W)
/(- (2x/W)i)]1/2} (4a)
and

g(z) =1 (2/7L)[1/(1-(22/L)))]”

. n2 1,2

+@2/7L) Y. b, 2z/L)1/(1- (22/L))] } (4b)
Jj=1 .

T,,(x) are Chebyshev polynomials of the first kind.

The spectral Green’s function G(a, 8) appearing in (2)
can be analytically obtained. To achieve this, the recurrent
algorithm developed by the authors in [10] has been ex-
tended to analyze three-dimensional geometries with gen-
eral anisotropy. The details of the calculation of G(a, B)
are explicitly given in Appendix I. From the expression of
G(a, B), it can be inferred that a direct equivalence be-
tween isotropic and anisotropic substrates in three dimen-
sions can only be made when we deal with uniaxial
anisotropic substrates having the optical axis aligned with
the Y axis appearing in Fig. 1(a). This is the particular case
discussed in [5].

The capacitive fringe effect of a semi-infinite microstrip
line (or stripline) is described by means of an open-circuit
capacitance C,., which can be worked out as [7]

C0C=O.5L1im (c(L)-LC). (5)
— o0

Here, C(L) is the capacitance of a rectangular conduc-
tor patch in which the width is that of the strip and the
length is L. C is the capacitance per unit length of a
microstrip or stripline. This capacitance can be calculated
with the techniques. described in [10] for a multilayéered
and anisotropic substrate. It was proved that the expres-
sion in brackets appearing in (5) converges to a limit when
L is taken to be¢ between 10 and 20 times the distance
between the rectangular conductor plate and the nearest
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Fig. 1. (a) Anisotropic and multilayered substrate. (b) Rectangular con-
ductor patch lying on the Mth interface of the multilayered substrate
shown in (a). (¢) Semi-infinite strip lying on the Mth interface of the
multilayered substrate shown in (a).

ground plane. Calculating C(L) usually means calculating
the capacitance of a rectangular patch in which L >> W.
For these narrow plates, -the charge density along the
longer direction remains nearly constant except for a re-
gion around the edge of the plate, in which it quickly
grows, becoming discontinuous. The excess charge density
is precisely the cause of the fringe capacitance of the
open-circuit striplike line [1]. To account for the behavior
of the charge density in narrow patches, the trial functions
along the longer direction were chosen to be different from
the ones defined in (4b). In those cases, the charge density
dependence on the z coordinate is given by

g(z)=(1/L)+ glbj{[l/H(L/z— )]

rexp (= j((L/2=z)/H)) |
+[1/H(L/2+ 2)]"*exp(— j((L/2+z)/H))
—2(7/7)"*(1/L)} (6)
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Fig. 2. Open-circuit capacitance of a stripline in vacuum. The dashed
line indicates the edge capacitance per unit length of a semi-infinite
plate between ground planes.

where
M N
H=mjn(ZH,, Y H,.).
=1 i=M+1

In Appendix II, we provide the expression of the charge
density transform p(a, B) obtained when the functions
defined in (4a), (4b), or (6) are introduced into (3).

It is necessary to point out that the determination of the
capacitance by means of (2) requires the calculation of
complicated double integrals all over the a—fB plane. The
CPU time involved in the direct process using Cartesian
coordinates in the transformed plane can be very high. To
avoid this, plane polar coordinates were used. Concerning
the radial part of the integrals, the asymptotic behavior of
the functions to be integrated was extrapolated and analyt-
ically integrated. Numerical integration was then carried
out over the initial functions minus their asymptotic be-
havior. Once the radial integrals had been obtained, the
angular integrals were calculated by using Gauss—Legendre
quadratures. Thanks to these modifications, the integration
process was considerably accelerated.

III. RESULTS

In Fig. 2, the open-circuit capacitance per unit strip
width of a stripline in vacuum is plotted versus the ratio
W/H. As the strip width increases, the values of the
open-circuit capacitance asymptotically tend to the value
of the edge capacitance per unit length of a semi-infinite
conductor plate between ground planes, which can be
analytically obtained by conformal mapping.

In Fig. 3, the capacitance of square and rectangular
microstrip patches is plotted as a function of the ratio
W/H. Graphs are presented for one isotropic substrate
(e=6) and for two uniaxial. anisotropic substrates (sap-
phire and pyrolitic boron nitride) with optical axis perpen-
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Fig. 3. Normalized capacitance (Cy = CH/€e,WLe%;) of a rectangular
conductor patch on isotropic and uniaxial anisotropic substrates: (I)
(¢, =€, =¢,=6.0) Comparison with the results obtained in [6] (+).
(II) Pyrolitic boron nitride [3] with aligned optical axis (¢, =¢, =
5.12;¢,=3.4; ¢ =8 = = 0). Comparison with Koul er al. [5] (x). (IID)
Sapphire [3] with aligned optical axis (e, =¢,=9.4; ¢, =11.6; ¢=0=
¥ = 0). Comparison with [5] (A). ’

dicular to the ground plane. The analysis of these three
cases, which correspond to axially symmetric substrates,
has already been carried out in the literature {5],[6]. Com-
parison is made with previously reported results and it can
be seen that the percent agreement is not very close (in
some cases, the difference reaches 10 percent or even
more). The origin of the existing discrepancy between the
results is believed to be the inaccurate charge density
approximations chosen by the authors in the reported
references. In [6], the charge density on the rectangular
patch is taken to be constant. In [5], the charge density is
approximated by using a third-degree polynomial in the X
direction and a uniform distribution in the Z direction (see
Fig. 1(b)).

In Fig. 4, we present graphs for the capacitance of
rectangular patches on uniaxial anisotropic substrates with
tilted optical axis. In this case, the substrates no longer
present axial symmetry and the analysis performed in [5]
cannot be applied.

In Fig. 5, the edge capacitance of an open circuit on
isotropic and anisotropic substrates is plotted versus W/ H.
In the isotropic case, we compare our results with those
reported by Silvester er al. [1]. These authors employ a
polynomial expansion to approximate the bidimensional
charge density excess at the edge of the open-circuit mi-
crostrip. Therefore, they also omit the edge singularity of
the charge density in their calculations. Owing to this,
some disagreement is found between their results and ours.

In Fig. 6, the effect of biaxial anisotropy on the capaci-
tance of a rectangular patch is studied. The angles between
the principal axes of the permittivity tensor and the coor-
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Fig. 4. Normalized capacitance (Cy =CH/e¢,WLe},) of rectangular
conductor patch on uniaxial anisotropic substrates with tilted optical
axis in the X-Y plane: (I) Anisotropic Kapton [4] (¢, =¢,=3.0;
€,=3.5; 0 =a/4; ¢ =y =0). (D) Pyrolitic boron nitride (¢, =¢, =
512; €, =3.4; § = 7/6; ¢ =14 =0). (II) Sapphire (¢, =€, =9.4; ¢, =
11.6; 0 =7/3; ¢ =y =0).

Coc/w (pF/m)

100

50

1t I||Il

[ L It
0.1 0.2 0.5 1.0 2.0 5.0 10.

10

W/

Fig. 5. Open-circuit capacitance of an abruptly ended microstrip: (I)
(e, =¢,=¢,=9.6). Comparison with the results appearing in [1] (+).
(II) Sapphire with tilted optical axis (6§ =/3). (II) Pyrolitic boron
nitride with tilted optical axis (6 = 7/6).

dinate axes are separately allowed to vary over the three
coordinate planes.

Finally, in Fig. 7, the effect of an isotropic inhomoge-
neous substrate with a varying permittivity in the Y direc-
tion on the edge capacitance of an open-circuit stripline is
analyzed. To simulate the varying permittivity, the sub-
strate has been divided into 20 layers of constant permit-
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Fig. 6. Normalized capacitance (Cy =CH/¢,WL) of a rectangular
patch as a function of the tilting angle between the principal axes of -
the permittivity tensor and the coordinate axes defined in Fig. 1(b) for
a biaxial substrate of PTFE [4]: (I) Tilt in X-Z plane (8 = 4 = 0). (1))
Tilt in X-Y plane (¢ = ¢ = 0). (II) Tilt in Y~ Z plane (¢ = § = 7/2).
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Fig. 7. Edge capacitance of a stripline filled with an isotropic substrate

with a varying permittivity in the Y direction: (I), (II) Gaussian
distribution. (IIT), (IV) Inverted Gaussian distribution.

tivity. The permittivity of each layer is taken to be equal to

 the value of €(y) in the middle point of the layer.

IV. CoNCLUSIONS

An accurate calculation of the lumped capacitance of a
rectangular microstrip patch and the edge capacitance of
an open-circuit microstrip or stripline is carried out. Varia-
tional expressions in the spectral domain are developed to
analyze these conductors when they are embedded in a
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multilayered anisotropic substrate. A recurrence algorithm,
easy to compute, is proposed to determine the three-
dimensional spectral Green’s function characterizing the
sort of substrates employed. The method makes it possible
to study biaxial substrates in the case of the rectangular
patch and uniaxial substrates with tilted optical axis in the
transverse plane in the case of open-circuit striplike trans-
mission lines. A detailed study of trial functions to approx-
imate the charge density on the conductors is carried out,
taking into account the physical features of each problem.
The results obtained are compared with those appearing in
the literature. Original design graphs are presented, with
special emphasis on the use of inhomogeneous and
anisotropic substrates.

APPENDIX |

The algorithm developed to calculate the spectral Green’s
functions associated with three-dimensional problems in-
volving multilayered and anisotropic substrates basically
presents the same recurrence relations reported in [10] and
{11]. However, certain expressions need to be redefined
owing to the fact that in this case, we deal with three-
dimensional physical structures and two-dimensional
Fourier transforms.This is the case with the coefficients
£.+1,and g (i=1,---,N-1), defined in [10] and [11],
which are now given by

g1, (a, B) = F €51 exp(— JO,1H +1)
‘[Sinh(FzﬂHiH)] ! (7
gtz(a B) [622 IECOth(FH)

(3)

where Q,(a, B) and F, (a, B) are functions of the spectral
variables a and 8, which can be written as

+€§2:1+1 +ICOth( i+1 l+1)]

Ql(a’ﬁ)=(a€1*2,l+ﬁfik3,l)/€ik2,l (9)

2
(e €3, — (e55.)")
2
+B2((§k2,l€§k3,l - (53:3,1) )

1,2
+2aB(efy €3, — 51"‘2,;"3‘3,1)]
(i=1,---,N). (10)

Once these changes are carried out, the rest of the
algorithm described in [11] remains valid for our purposes.

Fa.B)=(1/e3,)|

APPENDIX 11

According to (3), the charge density transform p(a, B)
can be expressed as

o) = [ (yea [

(L/2)
=f(a)g(ﬁ')-

e Bz 4

(11)
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Following (4a), f(«a) is given by

() = 1(a/2)+ L (=1 Gy a72) (12

where J, (x) are Bessel functions of the first kind.

In the case of rectangular plates with average dimen-
sions, (4b) is used for g(z), and in this case g(B) can be
written

¢(B) = Jo(BL/2)+ ¥ b,(~1)"1,,(BL/2). (13a)

=
For narrow rectangular plates, (6) must be used for
8(z); in this case g(B) is given by

g(B) =(2/BL)sin(BL/2)
n2

. 2”1{[% /(52 + )]

- cos [(1,/2)( BL — arctan ( BH//))]

~2(n/j)"*(2/BL)sin (BL/2)}. (13b)

To derive this last expression, we have employed the fact
that exp(—(jL/H))=0 when L/H>10 (j=1,---,n2).
That means that (13b) is valid as long as L/H >10. For
practical purposes, this is not a difficulty since the value of

L needed to calculate C,, in (5) can be as high as we wish.
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