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Lumped Capacitance and Open End Effects
of Striplike Structures in Multilayered

and Anisotropic Substrates

‘kAFAEL R. BOIX AND MANUEL HORNO, MEMBER, IEEE

Abstract —Variational techniques in the spectral domain are used to

calcnfate the lumped capacitance of a rectangular patch embedded in an

arbhrary multilayered anisotropic substrate in a very accurate way. The

results obtained are appfied to the determination of the quasi-static edge

capacitance of semi-infinite striplines and microstrip lines.

I. INTRODUCTION

PLANAR MICROSTRIP structures consisting of trans-

mission lines, discontinuities, and lumped elements are

nowadays widely used in MIC’S and MMIC’S. In the case

of finite-sized elements, rectangular and circular patches

are used as capacitors. Another subject of interest is that

of discontinuities, which invariably appear in any mi-

crostrip circuit. When discontinuity dimensions are much

smaller than the wavelength, they may be approximated by

lumped-element equivalent circuits. For instance, an RLC

termination can be used as a model for an abruptly ended

microstrip. In fact, in this case it is only necessary to take

into account the capacitive effect because it turns out to be

dominant when frequencies are kept below the quasi-static

limit [1], [2].

In this paper, we focus our attention on the calculation

of the lumped capacitance of a rectangular patch and the

edge capacitance of an open-circuit striplike line, both

embedded on a stratified substrate consisting of anisotropic

lossless dielectric layers. Multilayered structures are in-

cluded because they are used in MMIC applications when

several metal layers are involved. The effect of anisotropy

is also studied because significant errors may be incurred

when it is neglected in analyzing uniaxial and biaxial

substrates [3], [4]. In fact, extensive work on the characteri-

zation of infinite planar transmission lines on anisotropic

substrates can be found in the existing literature [3], but

the influence of anisotropy on the design of lumped ele-

ments and discontinuities has hardly been studied [5]. In

the analysis, variational techniques in the spectral domain

are used [6], [7] since they present inherent advantages over

other reported methods in the spatial domain [8], [9]. De-

sign graphs which enhance and generalize previously re-

ported results are given.
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II. OUTLINE OF THE THEOiWITICAL PROCEDURES

In Fig. l(a) is shown the cross section of a stratified

medium composed of N layers, of los.dess, anisotropic,

dielectric materials. Either one rectangular conductor plate

(Fig. l(b)) or one semi-infinite conductor strip (Fig. l(c)) is

placed at the Mth interface of the multilayered structure,

both referred to the coordinate axes as it is shown in Fig.

l(a)–(c). The conductors are assumed to be lossless and

infinitely thin. The interfaces i = O and i = Al, which limit

the multilayered structure, are allowed to be any of three

possibilities: electric walls, magnetic walls, or open bound-

aries. In the analysis of the rectangular plate shown in Fig.

l(b), each dielectric is defined by a general symmetric

permittivity tensor, given by the following expression:

The elements of tensor El can be expressed as a function

of its eigenvalues (X,, 6P,, and c,,i and of the Euler angles

+,, 8,, and $,, which describe the position of its principal

axes referred to the coordinate axes chosen in Fig. l(a).

When we study the open-circuit striplike line (Fig. l(c)),

we restrict ourselves to dielectric’ substrates with uniaxial

anisotropy and tilted optical axis in the X– Y plane of Fig.

l(a). Therefore, in that case, the tensor Z, in (1) is such that

cfi,, =~23,1= O(i=l, . . .. N).

It is possible to find a variiitional expression in the

spectral domain for the capacitance of the rectangular

plate of Fig. l(b) embedded in the multilayered structure

of Fig. l(a). This expression can be written as [7]

lie= (1/4n2Q2)J+mJ+mG (a,~)IP(a,p)12dadp.
—m —co

(2)

Here, P( a, ~ ) is the two-dimensional Fourier transform of

the charge density on the plate in the X– Z plane and

G(a, ~ ) may be interpreted as the Fourier transform of the

Green’s function worked out at the interface on which

conductors lie [6]. Following Thomson’s theorem, (2) pro-

vides a lower bound of the capacitance.
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Since the previous expression is stationary, a good ap-

proximation of the charge density on the conductor plate

may yield a very accurate value of the capacitance. To

optimize the results, trial function expansions are used to

represent the charge density. The Rayleigh–Ritz method is

applied to determine the unknown weighting coefficients.

Trial functions should be chosen in such a way that they

fulfill the physical constraints of the problem, such as the

discontinuity that the charge density has at the edges of

the conductor plate. In this sense, we enhance previous

charge density approximations [6], [7] and we propose the

following expression:

p(x, z)= f(x)g(z) (3)

where

{
f(x) = (2/rw)[l/(1-(2x/w) 2)]”2

+ (2/77w) f aiT2i(2x/w)
j=l

.[l/(1-(2x/w)’)] 1/2}

and

(4a)

(g(z) = (2/?rL)[l/(1- (2z/L)’)]1’2

+ (2/TL) ; bJT,j(2z/L)[l/(1 - (2z/L)2)] 1’2] . (4b)
j=~ )

T2i(x) are Chebyshev polynomials of the first kind.
The spectral Green’s function G(a, ~) appearing in (2)

can be analytically obtained. To achieve this, the recurrent

algorithm developed by the authors in [10] has been ex-

tended to analyze three-dimensional geometries with gen-

eral anisotropy. The details of the calculation of G(a, ~)

are explicitly given in Appendix I. From the expression of

G(a, ~), it can be inferred that a direct equivalence be-

tween isotropic and anisotropic substrates in three dimen-

sions can only be made when we deal with uniaxial

anisotropic substrates having the optical axis aligned with

the Y axis appearing in Fig. l(a). This is the particular case

discussed in [5].

The capacitive fringe effect of a semi-infinite microstrip

line (or stripline) is described by means of an open-circuit

capacitance COC,which can be worked out as [7]

COC=0.5~+m~ (C(L) –LC). (5)

Here, C(L) is the capacitance of a rectangular conduc-

tor patch in which the width is that of the strip and the

length is L. C is the capacitance per unit length of a

microstrip or stripline. This capacitance can be calculated

with the techniques described in [10] for a multilayered

and anisotropic substrate. It was proved that the expres-

sion in brackets appearing in (5) converges to a limit when

L is taken to be between 10 and 20 times the distance

between the rectangular conductor plate and the nearest
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Fig. 1. (a) Anisotropic and multilayered substrate. (b) Rectangular con-

ductor patch lying on the Mth interface of the multilayered substrate

shown in (a). (c) Semi-infinite strip lying on the Mth interface of the
multilayered substrate shown in (a).

ground plane. Calculating C(L) usually means calculating

the capacitance of a rectangular patch in which L >> W.

For these narrow plates, the charge density along the

longer direction remains nearly constant except for a re-

gion around the edge of the plate, in which it quickly

grows, becoming discontinuous. The excess charge density
is precisely the cause of the fringe capacitance of the

open-circuit striplike line [1]. To account for the behavior

of the charge density in narrow patches, the trial functions

along the longer direction were chosen to be different from

the ones defined in (4b). In those cases, the charge density

dependence on the z coordinate is given by

g(z) = (l/L)+ ~ b~{[l/H(L/2–z)]l/2
jel

. exp(– j((L/2– z)/H))

+ 11/H(L/2+ z)]l’’exp(– j((L/2+ z)/7ij)
- 2(m/j)’/2(l/L) ) (6)
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Fig. 2. Open-circuit capacitance of a stnpline in vacuum. The dashed
line indicates the edge capacitance per unit length of a semi-infinite

plate between ground planes.

where

( )H=min ~H,, ~ Hi .
,=1 i=M+l

In Appendix II, we provide the expression of the charge

density transform p ( a, P ) obtained when the functions

defined in (4a), (4b), or (6) are introduced into (3).

It is necessary to point out that the determination of the

capacitance by means of (2) requires the calculation of

complicated double integrals all over the a–~ plane. The

CPU time involved in the direct process using Cartesian

coordinates in the transformed plane cin be very high. To

avoid this, plane polar coordinates were used. Concerning

the radial part of the integrals, the asymptotic behavior of

the functions to be integrated was extrapolated and analyt-

ically integrated. Numerical integration was then carried

out over the initial functions minus their asymptotic be-

havior. Once the radial integrals had been obtained, the

angular integrals were calculated by using Gauss–Legendre

quadrature. Thanks to these modifications, the integration

process was considerably accelerated.

III. RESULTS

In Fig. 2, the open-circuit capacitance per unit strip

width of a stripline in vacuum is plotted versus the ratio

W/H. As the strip width increases, the values of the

open-circuit capacitance asymptotically tend to the value

of the edge capacitance per unit length of a semi-infinite

conductor plate between ground planes, which can be

analytically obtained by conformal mapping.

In Fig. 3, the capacitance of square and rectangular

microstrip patches is plotted as a function of the ratio

W/H. Graphs are presented for one isotropic substrate
(~= 6) and for two uniaxial anisotropic substrates (sap-

phire and pyrolitic boron nitride) with optical axis perpen-
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Normalized capacitance (CW = CH/cn WL& ) of a rectangulw

conductor patch on isotropic and mriaxi at anisotropic substrates: (I)

((X = c, = c= = 6.0) Comparison with the results obtained in [6] (+).
(II) Pyrolitic boron nitride [3] with aligned opticaJ axis (CX = c= =

5.12; CY= 3.4; @= O = + = O). Comparison with Koul et al. [5] (x). (III)

Sapphire [3] with aligned optical axis ((x ==c, = 9.4; c,= 11.6; @= 8 =

$ = O). Comparison with [5] (A).

dicular to the ground plane. The analysis of these three

cases, which correspond to axially symmetric substrates,

has already been carried out in the literature [5], [6]. Com-

parison is ,made with previously reported results and it can

be seen that the percent, agreemem t is not very close (in

some cases, the difference reaches 10 percent or even

more). The origin of the existing discrepancy between the

results is believed to be the inaccurate charge iiensit y

approximations chosen by the authors in the reported
references. In [6], the charge density on the rectangular

patch is taken to be constant. In [5], the ch~ge density is

approximated by using a third-degree polynomial in the X

direction and a uniform distribution in the Z direction (see

Fig. l(b)).

In Fig. 4, we present graphs for the capacitance of

rectangular patches on uniaxial anisotropic substrates with

tilted optical axis. In this case, the substrates no longer

present axial symmetry and the analysis performed in [5]

cannot be applied.

In Fig. 5, the edge capacitance of an open circuit on

isotropic and anisotropic substrates is plotted versus W/H.

In the isotropic case, we compare’ our results with those

reported by Silvester et al. [1]. These authors employ a

polynomial expansion to approximate the bidimensional

charge density excess at the edge of the open-circuit mi-

crostrip. Therefore, they also omit the edge singularity of

the charge density in their calculations. Owing to this,

some disagreement is found between their results and ours.

In Fig. 6, the effect of biaxial an isotropy on the capaci-

tance of a rectangular patch is studied. The angles between

the principal axes of the permittivity tensor and the coor-
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Fig. 4. Normalized capacitance (CN = CH/cOWLc~2) of rectangular

conductor patch on uniaxiaf anisotropic substrates with tilted opticaf
axis in the X– Y plane: (I) Anisotropic Kapton [4] (CX = c= = 3.0;
6P = 3.5; O = w/4; @= $ = (3). (II) Pyrolitic boron nitride (CX = c= =

5.12; c,=3.4; 0=57/6; q5=~=O). (III) Sapphire (cX=cz=9.4; ~,=

11.6; 0=r/3; r#I=41=O).
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Fig. 5. Open-circuit capacitance of an abruptly ended microstnp: (I)
(CX = c, = (z = 9.6). Comparison with the results appearing in [1] ( + ).

(II) Sapphire with tilted opticaf axis (L9=m/3). (III) Pyrolytic boron
nitride with tilted optical axis (t9= r/6).

dinate axes are separately allowed to vary over the three

coordinate planes.

Finally, in Fig. 7, the effect of an isotropic inhomoge-

neous substrate with a varying permittivity in the Ydirec-

tion on the edge capacitance of an open-circuit stripline is

analyzed. To simulate the varying permittivity, the sub-

strate has been divided into 20 layers of constant permit-
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Fig. 6. Normalized capacitance (CN = CH/co WL) of a rectangular
patch as a function of the tilting angle between the principaf axes of

the permittivity tensor and the coordinate axes defined in Fig. l(b) for
a biaxiaf substrate of PTFE [4]: (I) Tilt in X– Z plane (9 = ~ = O). (II)
Tilt in X-Y plane (+ = $ = O). (III) Tilt in Y-Z plane (O = I) = 7r/2).
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Fig. 7. Edge capacitance of a stripline filled with an isotropic substrate
with a varying permittivity in the Y direction: (I), (II) Gaussian

distribution. (III), (Iv Inverted Gaussian distribution.

tivity. The permittivity of each layer is taken to be equal to

the value of c(y) in the middle point of the layer.

IV. CONCLUSIONS

An accurate calculation of the lumped capacitance of a

rectangular microstrip patch and the edge capacitance of

an open-circuit microstrip or stripline is carried out. Varia-

tional expressions in the spectral domain are developed to

analyze these conductors when they are embedded in a
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multilayered anisotropic substrate. A recurrence algorithm,

easy to compute, is proposed to determine the three-

dimensional spectral Green’s function characterizing the

sort of substrates employed. The method makes it possible

to study biaxial substrates in the case of the rectangular

patch and uniaxial substrates with tilted optical axis in the

transverse plane in the case of open-circuit striplike trans-

mission lines. A detailed study of trial functions to approx-

imate. the charge density on the conductors is carried out,

taking into account the physical features of each problem.

The results obtained are compared with those appearing in

the literature. Original design graphs are presented, with

special emphasis on the use of inhomogeneous and

anisotropic substrates.

APPENDIX I

The algorithm developed to calculate the spectral Green’s

functions associated with three-dimensional problems in-

volving multilayered and anisotropic substrates basically

presents the same recurrence relations reported in [10] and

[11]. However, certain expressions need to be redefined

owing to the fact that in this case, we deal with three-

dimensional physical structures and two-dimensional

Fourier transforms.This is the case with the coefficients

b?+},, and %,, (~=1,.”., N – 1), defined in [10] and [11],

which are now given by

~,+,,,(a~) = -@l+1~~2,,+Iex P(-~Q1+,~i+l)

. [sinh(~+lHi+l)] ‘1 (7)

~,,,(a>~) ‘~o[@,gcoth(~H,)

+ ~T2j~+l~z+lcOth(~i+l~~+l )1 (8)

where Q, ( a, ~) and F, (a, B ) are functions of the spectral

variables a

q(a,~)

and P, which can be written as

Q,(a>P) = (a%%,,+& f3,, )/c~2,, (9)

= (1/6;2,r)[a2(f:, J~72,1 -(%%)’)

+B2(q2,1q,1-(q 3,t)2)

‘2a~(61%, icf2, i “lt,ifY3,i)]1’2

(i=l,...,lv). (lo)

Once these changes are carried out, the rest of the

algorithm described in [11] remains valid for our purposes.

APPENDIX II

According to (3), the charge density transform p(a, ~)

can be expressed as

p(a,p)=j +(qx) ~-Jctx &

- ( w/2)
pgdz).-’”~z

=f(a)g(p). (11)

1527

Following (4a), ~(a) is given by

f(a) = Jo(aw/2)+ f ai(-1)’.12z(txw/2) (12)
*=1

where J2 (x) are Bessel functions of the first kind.

In the case of rectangular plates with average dimen-

sions, (4b) is used for g(z), and in this case g(~) can be

written

g(p) = Jo(P~\z) + f by( --l) J.12j(~L/2). (13a)
1=1

For narrow rectangular plates, (6) must be used for

g(z); in this case g(~) is given by

g(P) = (2/13J5) sin (i3L/2)

+ f 4{[(2ti)/(P+ow2)1’4]
,=1

. cos [(1/2 )(/2L. – arctan (flH/j))]

– 2( m/j)l/2(2/~L) sin ( ,&L/2)}. (13b)

To derive this last expression, we have employed the fact

that exp(–(jL/H)) = O when L/H>10 (j=l,. . . . n2).

That means that (13b) is valid as long as L/H> 10. For

practical purposes, this is not a difficulty since the value of

L needed to calculate COCin (5) can be as high as we wish.
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